When can lp-norm objective functions be minimized via graph cuts?

نویسنده

  • Filip Malmberg
چکیده

Techniques based on minimal graph cuts have become a standard tool for solving combinatorial optimization problems arising in image processing and computer vision applications. These techniques can be used to minimize objective functions written as the sum of a set of unary and pairwise terms, provided that the objective function is submodular. This can be interpreted as minimizing the $l_1$-norm of the vector containing all pairwise and unary terms. By raising each term to a power $p$, the same technique can also be used to minimize the $l_p$-norm of the vector. Unfortunately, the submodularity of an $l_1$-norm objective function does not guarantee the submodularity of the corresponding $l_p$-norm objective function. The contribution of this paper is to provide useful conditions under which an $l_p$-norm objective function is submodular for all $p\geq 1$, thereby identifying a large class of $l_p$-norm objective functions that can be minimized via minimal graph cuts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of L-norm-minimal control problems for the wave equation*

For p = 2, only few results about analytic solutions of problems of optimal control of distributed parameter systems with minimal Lp–norm have been reported in the literature. In this paper we consider such a problem for the wave equation, where the derivative of the state is controlled at both boundaries. The aim is to steer the system from a position of rest to a constant terminal state in a ...

متن کامل

MRF's forMRI's: Bayesian Reconstruction of MR Images via Graph Cuts

Markov Random Fields (MRF’s) are an effective way to impose spatial smoothness in computer vision. We describe an application of MRF’s to a non-traditional but important problem in medical imaging: the reconstruction of MR images from raw fourier data. This can be formulated as a linear inverse problem, where the goal is to find a spatially smooth solution while permitting discontinuities. Alth...

متن کامل

Solving the Graph Cut Problem via l1 Norm Minimization

Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization. This l1 norm minimization can then be tackled by solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed pro...

متن کامل

A Compact Linear Programming Relaxation for Binary Sub-modular MRF

Direct linear programming (LP) solution to binary sub-modular MRF energy has recently been promoted because i) the solution is identical to the solution by graph cuts, ii) LP is naturally parallelizable and iii) it is flexible in incorporation of constraints. Nevertheless, the conventional LP relaxation for MRF incurs a large number of auxiliary variables and constraints, resulting in expensive...

متن کامل

Supplementary Material Accompanying ‘Geometry Driven Semantic Labeling of Indoor Scenes’

In this appendix, we will show how the higher order energy potentials can be minimized using graph cuts. Since, graph cuts can efficiently minimize submodular functions, we will transform our higher order energy function (Eq. 9) to a submodular second order energy function. For the case of both αβ-swap and αexpansion move making algorithms, we will explain this transformation and the process of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.00624  شماره 

صفحات  -

تاریخ انتشار 2018